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Dynamics of a spin-1 Ising system in the neighborhood of equilibrium states

Riza Erdem? and Mustafa Keskih
!Department of Physics, Gaziosmanaasniversity, 60110 Tokat, Turkey
2Institute of Science, Erciyes University, 38039 Kayseri, Turkey
Department of Physics, Erciyes University, 38039 Kayseri, Turkey
(Received 14 March 2000; revised manuscript received 30 January 2001; published 10 July 2001

The dynamics of a spin-1 Ising system containing biquadratic interactions near equilibrium states is formu-
lated by the method of thermodynamics of irreversible processes. From the expression for the entropy produc-
tion, generalized forces and fluxes are determined. The kinetic equations are obtained by introducing kinetic
coefficients that satisfy the Onsager relation. By solving these equations a set of relaxation times is calculated
and examined for temperatures near the phase transition temperatures, with the result that one of the relaxation
times approaches infinity near the second-order phase transition temperature on either side, whereas it is
sharply cusped at the first-order phase transition temperature. On the other hand, the other relaxation time has
a cusp at the second-order phase transition temperature but displays a different behavior at the first-order phase
transition, just a jump discontinuity. The behavior of both relaxation times is also investigated at the tricritical
point. Moreover, the phase transition behaviors of the relaxation times are also obtained analytically via the
critical exponents. Results are compared with conventional kinetic theory in the random-phase or generalized
molecular-field approximation and a very good overall agreement is found.
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[. INTRODUCTION erty of metastable states and the “overshooting” phenom-
enon as well as the role of unstable states in the phase
The thermodynamic behavior of many cooperative physidiagrams, via the path probability method of Kikudgi].
cal systems can be simulated by the spin-1 Ising modekinally, Keskin and Meije24] have also investigated the
which is also known as the Blume-Emery-Griffiths modeltime dependence of the system in the weak coupling limit by
[1]. The model was initially introduced to describe the phasea modified version of the Glauber mod@&5]. But a litera-
separation and superfluid orderingdde-*He mixtures. The ture survey leaves us with the impression that the dynamics
equilibrium properties of the model have been studied byof the spin-1 Ising model in the neighborhood of equilibrium
well known methods in equilibrium statistical physics suchstates have not been investigated in any detail using the
as the mean-field approximatiph—3], effective field theory methods of nonequilibrium thermodynamics. Onsager’s reci-
[4], the Monte Carlo renormalization techniquEs],  procity theorem[26], deduced by the application of time-
renormalization-group techniqug§], the cluster variation reversal symmetry to microscopic fluctuations, can provide
method [7-10], high-temperature series expansiphl], = some help in evaluating theories for coupled irreversible pro-
Monte Carlo simulationg12], the constant coupling approxi- cesses such as relaxation of order parameters in spin systems.
mation[13], the transfer matrix methofd 4], and the linear Onsager’s relations state that, for thermodynamic forces
chain approximatiori15]. While the equilibrium properties and fluxes that are linearly related and satisfy a specific set of
of the spin-1 Ising model have been studied extensively, theriteria (to be fully described in Sec. )| the effect of the
nonequilibrium behavior of the system have not been as thodriving force of each irreversible process upon the rate of the
oughly explored because dynamic models of cooperativether must be the same. This theorem has been successfully
phenomena are of more speculative nature. applied to describe the long-time kinetics of many transport
An early attempt to study the nonequilibrium behavior of or irreversible processes near equilibrium, such as steady-
the one-dimensional spin-1 Ising system was made Dbytate interface motion during phase transformation in a two-
Obokatd[16] who used the spin-1 Bethe method but ignoredcomponent systerf27], transport in inhomegeneous media
the crystal field, and subsequently extended it into a timef28], the gyrothermal effect with polyatomic gasg29],
dependent model. Tanaka and Takah&§Hj and also Batten mass and energy flow across the interface between dilute and
and Lemberg[18] studied the dynamics of a spin-1 Ising condensed phas¢30], and rarefied gas flow81].
model in the molecular-field approximation and also ob- The purpose of the present paper is, therefore, to formu-
tained the relaxation curves of order parameters. Saito andte the dynamics of the spin-1 Ising system including biqua-
Muller-Krumbhaar[19] also investigated the kinetics of a dratic interactions in the neighborhood of thermal equilib-
spin-1 antiferromagnetic Ising model using the time-rium states and to study the temperature dependence of
dependent Ginzburg-Landau theory and applied it to crystalelaxation times via the ratio of two interaction parameters
growth. Achiam[20] used the real-space renormalization- and the phenomenological kinetic coefficients. In particular,
group approach to study the dynamic behavior of a spin-lve investigate the behaviors of these times near the phase
Ising system and found the dynamic exponents. Keskin anttansition temperatures and the tricritical point. This is
co-workers have studied a number of nonequilibrium behavachieved by a combination of the thermodynamics of irre-
iors of the model[21,22, in particular the “flatness” prop- versible processes and the equilibrium statistical theory of
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cooperative phenomena. This type of calculation was first INW(S.O)=—NI(t+1S+10)n(t+is+1
performed by Tanakat al.[32]. They studied the relaxation (5.Q) [(3+25+2Q)In(3+25+:Q)

phenomena in a spif-lsing system near the second-order +(i—0)n(t—0)+(Lt—1ig4t
phase transition point. Then Barf83] and Barry and Har- (5-Qn(z=Q)+(5=25+2Q)
rington[34] created the same problem for AB-type ferro- XIn(3—3S+3Q)]. (5)

magnetic and antiferromagnetic Ising model, respectively, to
investigate the magnetic relaxation near the phase transition The equilibrium values of the dipolar order parameger

temperature.
. . . . and the quadrupolar order paramefeare found by the con-
The remainder of this paper is organized as follows. Inditions d P P o y

Sec. Il we give a description of the model and a brief sum-

mary of the static properties. In Sec. Ill, we briefly review IE

Onsager’s theorem and derive the kinetic equations. The so- — =0, (6a)
lution of the kinetic equations near equilibrium states is IS

given in Sec. IV. Finally, a summary and discussion of the

results are given in the last section. JF

%=O. (6b)

Il. THE MODEL AND EQUILIBRIUM PROPERTIES I . .
Q One can easily find the following set of self-consistent equa-

The Hamiltonian of the spin-1 Ising system with bilinear tions by using Eqs(4), (5), and(6):
and biquadratic interactions is given by
o 2e?PXQsinh(2BJ9)
- 1+2e?PXQcosh2B39)’

(7)
H:_‘]Z) SiSj—KZ QiQj, @)
{ M) 2 e2PXQcosh28J9) — 1

where the spins located at siten a discrete lattice can take 3 1+e*P*Qcosh2pIS)’ ®
the values 0£1. The first term describes the bilinear cou-

pling between the spins at sitesndj and the second term whereg=1/KT. It should be mentioned that E¢g) and(8)
describes the biquadratic coupling. Both interactions are recan be derived directlywith allowance for the different no-
stricted to thez nearest neighbor pair of spins which are tation from the mean-field approximation via the variational
absorbed in) andK. The order parameters of the system areprinciple for the free energjl] and the lowest approxima-
the dipolar order parametésr magnetizationSand the qua- tion of the cluster variational methdd,10]. Since the solu-

drupolar order paramete€), given by tion of these equations is discussed extensively in F3&i,
we shall give only a brief summary here as follows. For
s=(s) @) JIK<% a first-order phase transition occurs to a state with

Q<0.0 andS=0.0, which corresponds to the quadrupolar
phase. For <J/K<% there is a first-order phase transition
and to a state withl5>Q>0.0, which corresponds to a ferromag-
netic phase, and fod/K=% a transition of second order
Q=((S)% -3, (3)  exists to a state witls>Q>0.0 in the ferromagnetic phase.
The system has a tricritical point fd/K = 2. This informa-
tion is very important for studying the dynamics of the sys-

where(---) is the thermal expectation value. The definition tem

given by Eq.(3), which ensures tha®=0.0 at infinite tem-
perature, is different from the definitioR={((S;)?) used by
Blume, Emery, and Griffith§1] and by Lajzerowicz and Si- IIl. THEORY
vardiere[2].

In the molecular-field approximation in the Bragg- )
Williams formalism, the Helmholtz free energy of the spin-1 _IN order to state Onsager's theorem, consider a system
Ising system with bilinear and biquadratic interactions isWhose state can be described by a set of independent vari-
given as ablesA; that are even or odd functions of particle velocity.
The deviations of these parameters from their equilibrium
values are given by

A. Summary of the Onsager’s reciprocity theorem

F=—NJS-NKQ’-kTInW(S,Q), (4
= Ai - A?, (9)
whereN, k, and T are the number of Ising spins, the Boltz-
mann factor, and the absolute temperature, respectively, avdhere A is the equilibrium value. At equilibrium the en-
W(S,Q) is the number of configurations for given values of tropy is a maximum and the state variabtes are zero by
dipolar and quadrupolar order parameters. The last term idefinition. Therefore, for a nonequilibrium state one can
Eq. (4) is given by write the entropySg as
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o 12 4o 10 _1( #F 1/( 0°F
SE_ E_E a gijaiaj, (|,J— y ,..-)7 ( ) ng_? &S&Q o gQS aQqu
v_vheres_g _is the e_quiIibrium entropy value argj; are posi- _ —Nk + So
tive definite matrix elements that are called entropy produc- ( + 385+ 3Q0) (2 — 1S+ 3Qp) '
tion coefficients and are given by (180
9°Sg ) 1 ( 9°F ) a L[ PE
g.. fr f—g—
ij dajda; eq T\ da;dq; eq gQQ:f(ﬁ_Qz>
eq
Let the forcesX; and the fluxes); be defined as oK 1
=—Nk —
ISt _ kT 1-Q
Xi= 5a| Z gijaj, (12 20
1 $+0Q
da; - Z 1,1 1 - 10 1 1 ’ (18(:)
A (3+2S5+2Q0)(5—25+32Q0)
=g (13

Using Egs.(9) and (13), we find for the flows in order pa-

Then, if the forces and fluxes are described by the linearameters

phenomenological equations

dal dS
Jl:W:Jszm’ (193)
\]i:; Lijle (14)
da d
o 5,=002_ 5,299 (19b
Onsager’s reciprocity theorem states that dt dt
Lij==L;, (15) and using Eqgs(9)—(12) we have for the forces
where the plus sign corresponds to the quantiiigand «; X, = as‘E —X IS (203
having the same parity, and the minus sign corresponds to 1 aal s d(S— SO)
and «; having different parity.
X 08 N dSg (200
B. Derivation of kinetic equations 2" ga; T a(Q-Q)”

In order to derive the kinetic equations, l&t=S and  gypstituting Eq(17) into Egs.(20a and (20b) one can ob-
A,=Q be the dipolar and quadrupolar order parameters if5in the forces as

the spin-1 Ising system, respectively. Then the deviations of
these parameters from their equilibrium values are given by

CV]_:CYS:S_SO and a2=aQ=Q—QO,

(219
(21b)

Xs=—0sdS—Sy) —9sa(Q— Qo)
=—0sa(S—Sp) —9oa(Q—Qo)-

whereS,; andQ, are the equilibrium values. Using EQ.0), According to the Onsager theory of irreversible thermo-
the entropy for a nonequilibrium state in the system is writ-dynamics, the linear relations between the currents and
ten as forces given by Eq(14) may be written in terms of a matrix

of phenomenological rate coefficients where the off-diagonal
elements are the negatives one of another across the main
diagonal(the matrix is not symmetric sincgis an odd vari-

able whileQ is an even variable under time inversjon

(16)

Se=S2— 3[9sd S—So)2+2gsof S—S0)(Q— Qo)

+900(Q—Qo)1, (17)

with the entropy production coefficients defined by Js] [Ls —L][Xs

= . 22

1 (a2p> Jol [ L %o 22
9ss77| 522 eq Substituting Eqs(21a and (21b) into Eq. (22) and using

Egs.(19), we obtain the kinetic equations as
- 2] 1 §+Qo as
KT 4 (3+38%+3Q(-1%+3Q0)] 5=~ (Ls¥ss~L0sol(S—So)~ (LsGsqL8ao)(Q— Qo)
(183 (239
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dQ Ls9sstLodoo
— = —(LgsstL S- €)= , 28
at (LgsstLo0so)(S—So) 71(€) (LSLQJFLZ)(QSSQQQ—géq) (283
—(L +L - . 23b
The solutions of these kinetic equations are given in the next (LsOsstLolog)’— (Lsko+ L) (gsPoo— 950
section. (28b)

IV. SOLUTION OF THE KINETIC EQUATIONS NEAR where the entropy production coefficients become

EQUILIBRIUM STATES
In order to study the dynamics of the model in the neigh- gsd €)=—Nk

borhood of equilibrium states, a solution of the foem" is k(Te—e)
assumed for the linearized kinetic equations given by Egs. 5
(2339 and(23b) and the approaches 8{t) andQ(t) to their _ E 5+ Qo
equilibrium values are described by two characteristic times, 4 (1415+1Qp) (s —1S+1Qg |
which are also called the relaxation times. Therefore, to find
these times requires the solution of the secular equation (299
7 '-LgOsstLOsq  —LsOsotLlPgo 0. (24 Osql€)=ggs(€)
—Lgss—LoUso 7 '~LoUoo—LOUsq NK 1 S }
which yields the following two inverse relaxation times: 4 (3+3S9+7Q0) (3~ S+ Qo)
(29b)
i: (QSSQQQ_géQ)(LsLQ+ L2) (253
T Lo9ootLs9ss ' . 2K 1
1 (9s Do~ 92 (LsLg+L?) (Tem@) Qo
T_:(LQgQQ+ Lsgsg)| 1— L L0590’ s
2 QY90qQ™ Lsls (25 1 51t Qo ]
_ _ _ 4 (3+3S0+3Q0) (53— 3Sp+ Qo)
One observes that the off-diagonal rate coefficienbupling (290

the dipolar and quadrupolar order currents in EZR) ap-
pears in Egs.(253 and (25b only through the factor
(LsLo+L?). The assumption is made in this paper théis
negligible compared with gL 5 for temperatures close to the

The equilibrium values of the order parameters appearing in
Eqg. (29 can be expressed in the vicinity ®f by

critical temperaturd ¢, i.e., _, K 3J/K—1 |¥2 i 0
LabotL2~Lelo, 26) S()=2\58 BIK=2)3IK| € (303

for temperatures neaf.. Strickly speaking, assumption _k 3 30

(26) may be completely verified only by a theory external to Qo(e)= 2K 3J/K—2°€ (30D

irreversible thermodynamig¢83]. The dipolar and quadrupo-

lar order parameterS andQ approach their equilibrium val- for J/K>2% where the system undergoes a second-order
uesS, and Qg with two reduced characteristic timeg and  phase transition and

T, given by Eqs(253 and (25b).

The behavior of these relaxation times near the phase k 40\ a
transition points can be obtained analytically from the criti- So(f)z(ﬁ 1_3) € (319
cal exponents. As one approaches the critical point, various
thermodynamic functions may diverge or go to zero or even kK 10\ /2
remain finite. It is therefore convenient to introduce an ex- Qo e)E(R f%) 12 (31b
pansion parameter
e=Te—T, 27) for the tricritical pointJ/K=%. For $<J/K<%, where the

system undergoes a first-order phase transition, each of them

where T is the critical temperature, which is a measure ofvanishes aff ¢ as

the distance from the critical point. Near the critical point, o

the relaxation times, namely, Eq®5a and (25b), can be SO(E)EZ[L 3J/K-1 } 2 (329
written in the form 2K (2—3J/K)J/IK '
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k
Qo(f)gﬁm(—e)- (32b

The critical exponents for the functions(e) and 7,(€) are
defined, respectively, as

i In 7'1(6)
M=M= (333
In €
Ay limnr2€) (33b)
o Ine

This definition is valid for all values oh; (i=1,2), the
negative values corresponding to divergences of the vari-
ablest,(€) and 7,(€) as e goes to zero, the positive values
corresponding to relaxation times that approach zero, and the
zero values corresponding to logarithmic divergence, jump
singularities, or cuspgthe relaxation times are finite at the
critical point but one of their derivatives divergd86]. On

the other hand, in order to distinguish a cusp from a loga-
rithmic divergence another sort of critical exponent ) is
introduced. To find the exponeit that describes the singu-
lar parts of the functions(e) and 7,(e) with a cusplike
singularity, we first find the smallest integesuch that the
derivativesd' 7, /9el = 7{)(€) andd r,/9¢l = 78 (€) diverge
ase—0 [36]. We then define

In[7(e)|

N =j+Ilim ne

e—0

(i=1,2. (34)

Using Eqgs.(29—(32) in Eq. (28) and substituting the result-
ing expression into EqY33) one can calculate the critical
exponents for the relaxation times at the phase transition
temperatures.

The behavior of the relaxation timg as a function of the
temperature in the ferromagnetic phase is shown in Figs.
1(a)—1(c) for several values aJ/K, which correspond to the
second-order phase transition temperature, the first-order
phase transition temperature, and the tricritical point, respec-
tively. In the figures, the solid curves are fog=10, L
=0.00001, La=1.0, the dashed curves fdrg=15, L
=0.00001,L5=1.5, and the numbers associated with each
curve are the various values #K. The vertical dotted lines
refer to the phase transition temperatures. In this cage,
increases rapidly with increasing temperature and diverges as

the temperature approaches the second-order phase transition

point on either side, as seen in Figall because the critical
exponents ofr; in the ferromagnetic phase f&/K>3 are

found to beh;=—1.0 for all kinetic coefficients. On the
other hand,r; also increases rapidly as the temperature i

A1=0.0 but\;=1.0 (since the second derivative af di-
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FIG. 1. (a) Relaxation timer; as a function of the temperature
. for the ferromagnetic phase. The number accompanying each curve
. . . . Sdenotes the value al/K. The vertical dotted lines represent the
raised but makes a sharp cusp with a critical point exponerHritical points, which are all second order. The solid and dashed

curves correspond tog=10,L=0.00001L o=1.0 andLs=15,L

verges ag 1) at the first-order phase transition temperature = 0.00001L o=1.5, respectively(b) Same asa) but the system

illustrated in Fig. 1b). It should be mentioned that this is a undergoes a first-order ferromagnetic phase transition and the ver-
truly first-order behavior and not due to the proximity of tical dotted lines indicate the first-order phase transition tempera-

critical behavior via a tricritical point. Moreover, the behav- tures. Ls=10, L=0.0001,L4=1.0. (c) Same as(a) but for the
ior of 7 as a function of temperature near the tricritical pointsystem at the tricritical point anids=10, L=0.00001,Lo=1.0.
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is plotted in Fig. 1c). One can see from the figure that

also increases rapidly with temperature and diverges at the
tricritical point as in the second-order case but with a differ-
ent value of critical exponent, namely;~ —0.893. Since

the critical exponent for the tricritical case is smaller than
that for the critical case the divergence fgr near the tric-

ritical point is more sudden than near the second-order phase

transition point. Furthermorez; remains constant very far
from the phase transition temperatures and tricritical point.
Finally, we have found that increasing the valued gfand

L leads to a speeding up of the whole relaxation process as
can be seen by comparing the dashed and solid curves in Fig.
1(a).

The dependence of the other relaxation timeon the
temperature in the case of the ferromagnetic phase is repre-
sented in Figs. @)—2(c) for several values o8/K, which
correspond to the second-order phase transition temperature,
the first-order phase transition temperature, and the tricritical
point, respectively. In these figures, the solid and dashed
curves correspond tbg=10, L=0.00001,L5=1.0 andLg
=15,L=0.00001,L,=1.5, respectively, and the numbers
on the curves are the valuesdK. The vertical dotted lines
illustrate the critical temperatures, scarcely varies with
temperature in this phase, and slightly increases just below
and above the phase transition temperatures. It should be
stressed that cusps occurred fgrat the critical and tricriti-
cal points, seen in Fig.(d and Fig. Zc), respectively, be-
cause the second derivative of for the critical case and the
first derivative for the tricritical case diverge as® and as
e 2 respectively, wher— 0. Hence from Eq(34) it fol-
lows that\,=2—1=1 for the critical case and,=1—3
=0.5 for the tricritical case. On the other hand,displays a
different behavior at the first-order phase transition tempera-
ture, just a jump discontinuity with ,~0.0 [see Fig. 20)].

We have also found that increasing valueslef and Lq
leads to a speeding of the whole relaxation pro¢esmpare
also the dashed and solid curves in Fi¢a)2

The temperature dependence of the relaxation times
and 7, in the quadrupolar phase is shown in Fig. 3 for sev-
eral values ofl/K, which correspond to the first-order phase
transition temperature. In the figure, is depicted as solid
curves andr, as dashed curves for only one case, namely,
Ls=10,L=0.00001, and.o=1.0. The number accompany-
ing each curve denotes the valueldK and the dotted line
corresponds to the first-order phase transition temperature in
the quadrupolar order parameter. Unlike the relaxation time
7, in the ferromagnetic phase; in the quadrupolar phase
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0.6

0.9 1.5 1.8

1.2
kT/K

FIG. 2. (a) Same as Fig. (), but for the relaxation time,. (b)

does not depend od/K below the critical temperature, Same as Fig. (b), but for the relaxation time,. (c) Same as Fig.

whereas it depends oK above the critical point. It in-
creases rapidly with increasing temperature but remains fi-
nite at the critical point. On the other hand, the other relax-

ation time 7, scarcely varies except at temperatures just

below and above the first-order phase transition temperature,
where it increases slightly with increasidgk.

7T '~ LsOsst Ldso
—Lgss—LoOsa

1(c), but for the relaxation time,.

—Ls9sotLdoo
7'~ LoBoo— LYsq

¢(k)1} _
D2 =0,
(395

Phenomenological insight can be given into the differentwhere r, * are the eigenvalues given by E@5). Equation
behaviors of the relaxation times via the corresponding3s) yields the pair of equations

eigenvectors of the secular equation, namely, ¢). The
eigenvectorsp (k=1,2), are determined from the follow-
ing equation:

026102-6
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FIG. 3. Relaxation times, and r, as functions of temperature

PHYSICAL REVIEW E 64 026102

71 '—LsOsst Ldso
Ldoo—LsUso

Y1=(S-S)— (Q—Qo), (40a

;= LagsstL
To S8 29504 qq). (40m

Y2=(S—So)— 00— Ledso

Using Eq.(40), the dipolar and quadrupolar order parameters
may be written, respectively, as

1 B
S=Sp+ —1——1{[72 "+ 3(LUsq—LsGs91Y1
T 71

—[77 '+ 3(Lgso—LsOs91Ya}, (413

1
Q=Qo+ —1——=7(Ldgo—Lsdso)(Y1—Y2). (41b
T, TT1

Equations(41) show that the relaxation of the dipolar and
quadrupolar order parameters is characterized by both relax-
ation timesr; and r,. For temperatures near the critical

temperature3 -, Y, decays much more rapidly in time than
Y, since 7, increases rapidly and approaches infinity while

for the quadrupolar phase. The number accompanying each curvg, increases only slightly for such temperatures. Therefore,
denotes the value ol/K. The vertical dotted line represents the one concludes that both of the order parameters given by Eq.

critical point, which is first order and the same for eaé¢K. The
solid and dashed curves correspond-iand 75, respectively, and
Ls=10,L=0.00001,L5=1.0.

(—LYss—LoUso 1+ (7 *—Loloot Lgsq)ff)(k)z(: O-b
36

Arbitrarily, we let ¢y, =1. Then

— 7 "+ LeOss Ldsqo

= 37
2= gt Laag (379
or
LgsstLaOso
Y — . (37b
T " ~LqYoq~LIsq
Hence, the corresponding eigenvectors are
-l @9
Pio= D2l

(41) experience a critical slowing down. It should be men-
tioned that, for temperatures ne@g, not only (as men-
tioned abovedoesY, decay much more slowly in time than
Y, but also Eq(4139 shows that the amplitude of the normal
coordinateY, is much smaller than the amplitude of the
normal coordinatey,. These behaviors have also been ob-
served in the theory of relaxation phenomena in Ising anti-
ferromagnetg34]. On the other hand, if the temperature is
near the first-order phase transition temperatifredecays
more rapidly thanY, in the case of the second-order phase
transition temperature, becausgincreases rapidly but does
not approach infinity at the first-order phase transition. More-
over, Y, behaves just liker, in the case of a second-order
phase transition.

V. SUMMARY AND DISCUSSIONS

In this paper, we have studied the dynamics of the spin-1
Ising system containing biquadratic interactions in the neigh-
borhood of thermal equilibrium states by means of Onsager’s
theory of irreversible thermodynamics. More specifically, us-
ing an expression for the free energy obtained by the
molecular-field approximation in the Bragg-Williams formal-

Having found the system of relaxation times and the coriSM, the entropy produced in the irreversible process is cal-
responding eigenvectors, it is instructive to calculate next th€ulated and the time derivatives of dipolar and quadrupolar
normal coordinates associated with the negative reciproca@der parameters are treated as fluxes conjugate to their ap-
of these relaxation times and the eigenvectors. Diagonalizin§'opriate forces in the sense of Onsager’s theory. The kinetic

the system of equation®3) one finds

TIl 0
B 0 rgl

Y
Ys

Yl},

v (39

whereY, andY, are the normal coordinate¥,; andY, are
obtained by using E(38) as

equations are obtained by introducing the phenomenological
kinetic coefficients that satisfy the Onsager reciprocal rela-
tion. The solution of these equations near equilibrium states
is given by two relaxation times which describe the nonequi-
librium behavior in the cooperative system. The behavior of
these relaxation times as a function of temperature is deter-
mined and examined for temperatures near the phase transi-
tion points. The results are summarized as follows. One of

026102-7



RIZA ERDEM AND MUSTAFA KESKIN PHYSICAL REVIEW E 64 026102

the relaxation times ;) increases rapidly with increasing relaxation times, via the corresponding eigenvectors of the
temperature and tends to infinity near the critical point asecular equation.

(Te—T) 1 and the tricritical point asTc—T) %% but it The behavior of the relaxation times as a function of tem-
has a sharp cusp with; =1 at the first-order phase transition perature mentioned above is also compared with the results
point in the ferromagnetic phase. The other relaxation timef conventional kinetic theory in the random-phase or gen-
(72) scarcely varies with temperature in the ferromagneticeralized molecular-field approximatidin7] and exactly the
phase; it increases slightly just below and above the phasgame behavior is found far, and r, (compare Figs. 1 and 2
transition temperatures and the tricritical point. It should benere with Fig. 2 in Ref[17], and also Fig. 3 here with Fig. 1
noted that cusps are seen for the critical and tricritical behavin the same referengelt is worthwhile to mention that the

lors of 7, with \;=1 and \;=0.5, respectively, while a re|axation times above the critical temperatures are not ob-
jump discontinuity §,=0.0) is observed for the first-order tajned in Ref[17].

behavior ofr,. On the other hand, in the quadrupolar phase,

7, increases rapidly with increasing temperature, remains fi-

nite at the first-order phase transition, and does not depend ACKNOWLEDGMENTS
on J/K below the critical points, whereas it dependsJéK
above the critical points. However, likey in the ferromag- We gratefully acknowledge the support of NATO Grant

netig phaser, in the quadrupolar phase also scarcely variedNo. CRG.970008 1036/97, without which this work could
with temperature and slightly increases just below and aboveot have been accomplished. This work was also supported
the first-order phase transition point. Moreover, we also giveby Erciyes University Research Funds under Grant No. 99-
phenomenological insight into the different behaviors of the70-01.
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