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Dynamics of a spin-1 Ising system in the neighborhood of equilibrium states
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The dynamics of a spin-1 Ising system containing biquadratic interactions near equilibrium states is formu-
lated by the method of thermodynamics of irreversible processes. From the expression for the entropy produc-
tion, generalized forces and fluxes are determined. The kinetic equations are obtained by introducing kinetic
coefficients that satisfy the Onsager relation. By solving these equations a set of relaxation times is calculated
and examined for temperatures near the phase transition temperatures, with the result that one of the relaxation
times approaches infinity near the second-order phase transition temperature on either side, whereas it is
sharply cusped at the first-order phase transition temperature. On the other hand, the other relaxation time has
a cusp at the second-order phase transition temperature but displays a different behavior at the first-order phase
transition, just a jump discontinuity. The behavior of both relaxation times is also investigated at the tricritical
point. Moreover, the phase transition behaviors of the relaxation times are also obtained analytically via the
critical exponents. Results are compared with conventional kinetic theory in the random-phase or generalized
molecular-field approximation and a very good overall agreement is found.
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I. INTRODUCTION

The thermodynamic behavior of many cooperative phy
cal systems can be simulated by the spin-1 Ising mo
which is also known as the Blume-Emery-Griffiths mod
@1#. The model was initially introduced to describe the pha
separation and superfluid ordering in3He-4He mixtures. The
equilibrium properties of the model have been studied
well known methods in equilibrium statistical physics su
as the mean-field approximation@1–3#, effective field theory
@4#, the Monte Carlo renormalization technique@5#,
renormalization-group techniques@6#, the cluster variation
method @7–10#, high-temperature series expansion@11#,
Monte Carlo simulations@12#, the constant coupling approx
mation @13#, the transfer matrix method@14#, and the linear
chain approximation@15#. While the equilibrium properties
of the spin-1 Ising model have been studied extensively,
nonequilibrium behavior of the system have not been as t
oughly explored because dynamic models of coopera
phenomena are of more speculative nature.

An early attempt to study the nonequilibrium behavior
the one-dimensional spin-1 Ising system was made
Obokata@16# who used the spin-1 Bethe method but ignor
the crystal field, and subsequently extended it into a tim
dependent model. Tanaka and Takahashi@17# and also Batten
and Lemberg@18# studied the dynamics of a spin-1 Isin
model in the molecular-field approximation and also o
tained the relaxation curves of order parameters. Saito
Müller-Krumbhaar@19# also investigated the kinetics of
spin-1 antiferromagnetic Ising model using the tim
dependent Ginzburg-Landau theory and applied it to cry
growth. Achiam @20# used the real-space renormalizatio
group approach to study the dynamic behavior of a spi
Ising system and found the dynamic exponents. Keskin
co-workers have studied a number of nonequilibrium beh
iors of the model@21,22#, in particular the ‘‘flatness’’ prop-
1063-651X/2001/64~2!/026102~9!/$20.00 64 0261
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erty of metastable states and the ‘‘overshooting’’ pheno
enon as well as the role of unstable states in the ph
diagrams, via the path probability method of Kikuchi@23#.
Finally, Keskin and Meijer@24# have also investigated th
time dependence of the system in the weak coupling limit
a modified version of the Glauber model@25#. But a litera-
ture survey leaves us with the impression that the dynam
of the spin-1 Ising model in the neighborhood of equilibriu
states have not been investigated in any detail using
methods of nonequilibrium thermodynamics. Onsager’s re
procity theorem@26#, deduced by the application of time
reversal symmetry to microscopic fluctuations, can prov
some help in evaluating theories for coupled irreversible p
cesses such as relaxation of order parameters in spin sys

Onsager’s relations state that, for thermodynamic for
and fluxes that are linearly related and satisfy a specific se
criteria ~to be fully described in Sec. III!, the effect of the
driving force of each irreversible process upon the rate of
other must be the same. This theorem has been success
applied to describe the long-time kinetics of many transp
or irreversible processes near equilibrium, such as stea
state interface motion during phase transformation in a tw
component system@27#, transport in inhomegeneous med
@28#, the gyrothermal effect with polyatomic gases@29#,
mass and energy flow across the interface between dilute
condensed phases@30#, and rarefied gas flows@31#.

The purpose of the present paper is, therefore, to form
late the dynamics of the spin-1 Ising system including biq
dratic interactions in the neighborhood of thermal equil
rium states and to study the temperature dependenc
relaxation times via the ratio of two interaction paramet
and the phenomenological kinetic coefficients. In particu
we investigate the behaviors of these times near the ph
transition temperatures and the tricritical point. This
achieved by a combination of the thermodynamics of ir
versible processes and the equilibrium statistical theory
©2001 The American Physical Society02-1
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cooperative phenomena. This type of calculation was fi
performed by Tanakaet al. @32#. They studied the relaxation
phenomena in a spin-1

2 Ising system near the second-ord
phase transition point. Then Barry@33# and Barry and Har-
rington @34# created the same problem for anAB-type ferro-
magnetic and antiferromagnetic Ising model, respectively
investigate the magnetic relaxation near the phase trans
temperature.

The remainder of this paper is organized as follows.
Sec. II we give a description of the model and a brief su
mary of the static properties. In Sec. III, we briefly revie
Onsager’s theorem and derive the kinetic equations. The
lution of the kinetic equations near equilibrium states
given in Sec. IV. Finally, a summary and discussion of t
results are given in the last section.

II. THE MODEL AND EQUILIBRIUM PROPERTIES

The Hamiltonian of the spin-1 Ising system with biline
and biquadratic interactions is given by

H52J(
~ i j !

SiSj2K(
~ i j !

QiQj , ~1!

where the spins located at sitei on a discrete lattice can tak
the values 0,61. The first term describes the bilinear co
pling between the spins at sitesi and j and the second term
describes the biquadratic coupling. Both interactions are
stricted to thez nearest neighbor pair of spins which a
absorbed inJ andK. The order parameters of the system a
the dipolar order parameter~or magnetization! Sand the qua-
drupolar order parameterQ, given by

S[^Si&, ~2!

and

Q[^~Si !
2&2 2

3, ~3!

where^¯& is the thermal expectation value. The definitio
given by Eq.~3!, which ensures thatQ50.0 at infinite tem-
perature, is different from the definitionQ5^(Si)

2& used by
Blume, Emery, and Griffiths@1# and by Lajzerowicz and Si
vardiere@2#.

In the molecular-field approximation in the Brag
Williams formalism, the Helmholtz free energy of the spin
Ising system with bilinear and biquadratic interactions
given as

F52NJS22NKQ22kT ln W~S,Q!, ~4!

whereN, k, andT are the number of Ising spins, the Bolt
mann factor, and the absolute temperature, respectively,
W(S,Q) is the number of configurations for given values
dipolar and quadrupolar order parameters. The last term
Eq. ~4! is given by
02610
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ln W~S,Q!52N@~ 1
3 1 1

2 S1 1
2 Q!ln~ 1

3 1 1
2 S1 1

2 Q!

1~ 1
3 2Q!ln~ 1

3 2Q!1~ 1
3 2 1

2 S1 1
2 Q!

3 ln~ 1
3 2 1

2 S1 1
2 Q!#. ~5!

The equilibrium values of the dipolar order parameteS
and the quadrupolar order parameterQ are found by the con-
ditions

]F

]S
50, ~6a!

]F

]Q
50. ~6b!

One can easily find the following set of self-consistent eq
tions by using Eqs.~4!, ~5!, and~6!:

S5
2e2bKQ sinh~2bJS!

112e2bKQ cosh~2bJS!
, ~7!

Q5
2

3

e2bKQ cosh~2bJS!21

11e2bKQ cosh~2bJS!
, ~8!

whereb51/kT. It should be mentioned that Eqs.~7! and~8!
can be derived directly~with allowance for the different no-
tation! from the mean-field approximation via the variation
principle for the free energy@1# and the lowest approxima
tion of the cluster variational method@9,10#. Since the solu-
tion of these equations is discussed extensively in Ref.@35#,
we shall give only a brief summary here as follows. F
J/K, 1

3 a first-order phase transition occurs to a state w
Q,0.0 andS50.0, which corresponds to the quadrupo
phase. For13 <J/K, 2

3 there is a first-order phase transitio
to a state withS.Q.0.0, which corresponds to a ferroma
netic phase, and forJ/K> 2

3 a transition of second orde
exists to a state withS.Q.0.0 in the ferromagnetic phase
The system has a tricritical point forJ/K5 2

3 . This informa-
tion is very important for studying the dynamics of the sy
tem.

III. THEORY

A. Summary of the Onsager’s reciprocity theorem

In order to state Onsager’s theorem, consider a sys
whose state can be described by a set of independent
ablesAi that are even or odd functions of particle velocit
The deviations of these parameters from their equilibri
values are given by

a i5Ai2Ai
0, ~9!

where A1
0 is the equilibrium value. At equilibrium the en

tropy is a maximum and the state variablesa1 are zero by
definition. Therefore, for a nonequilibrium state one c
write the entropySE as
2-2



uc

ea

o

s
b

rit
o-
and

nal
main

DYNAMICS OF A SPIN-1 ISING SYSTEM IN THE . . . PHYSICAL REVIEW E 64 026102
SE5SE
02

1

2 (
i , j

gi j a ia j , ~ i , j 51,2, . . .!, ~10!

whereSE
0 is the equilibrium entropy value andgi j are posi-

tive definite matrix elements that are called entropy prod
tion coefficients and are given by

gi j 5S ]2SE

]a i]a j
D

eq

5
1

T S ]2F

]a i]a j
D

eq

. ~11!

Let the forcesXi and the fluxesJi be defined as

Xi5
]SE

]a i
52(

j
gi j a j , ~12!

Ji5
da i

dt
. ~13!

Then, if the forces and fluxes are described by the lin
phenomenological equations

Ji5(
j

L i j Xj , ~14!

Onsager’s reciprocity theorem states that

Li j 56L ji , ~15!

where the plus sign corresponds to the quantitiesa i anda j
having the same parity, and the minus sign corresponds ta i
anda j having different parity.

B. Derivation of kinetic equations

In order to derive the kinetic equations, letA15S and
A25Q be the dipolar and quadrupolar order parameters
the spin-1 Ising system, respectively. Then the deviation
these parameters from their equilibrium values are given

a15aS5S2S0 and a25aQ5Q2Q0 , ~16!

whereS0 andQ0 are the equilibrium values. Using Eq.~10!,
the entropy for a nonequilibrium state in the system is w
ten as

SE5SE
02 1

2 @gSS~S2S0!212gSQ~S2s0!~Q2Q0!

1gQQ~Q2Q0!#, ~17!

with the entropy production coefficients defined by

gSS5
1

T S ]2F

]S2 D
eq

52NkF 2J

kT
2

1

4

2
3 1Q0

~ 1
3 1 1

2 S01 1
2 Q0!~ 1

3 2 1
2 S01 1

2 Q0!
G ,

~18a!
02610
-

r

in
of
y

-

gSQ5
1

T S ]2F

]S]QD
eq

5gQS5
1

T S ]2F

]Q]SD
eq

52NkF1

4

S0

~ 1
3 1 1

2 S01 1
2 Q0!~ 1

3 2 1
2 S01 1

2 Q0!
G ,

~18b!

gQQ5
1

T S ]2F

]Q2D
eq

52NkF2K

kT
2

1
1
3 2Q0

2
1

4

2
3 1Q0

~ 1
3 1 1

2 S01 1
2 Q0!~ 1

3 2 1
2 S01 1

2 Q0!
G . ~18c!

Using Eqs.~9! and ~13!, we find for the flows in order pa-
rameters

J15
da1

dt
5JS5

dS

dt
, ~19a!

J25
da2

dt
5JQ5

dQ

dt
, ~19b!

and using Eqs.~9!–~12! we have for the forces

X15
]SE

]a1
5XS5

]SE

]~S2S0!
, ~20a!

X25
]SE

]a2
5XQ5

]SE

]~Q2Q0!
. ~20b!

Substituting Eq.~17! into Eqs.~20a! and ~20b! one can ob-
tain the forces as

XS52gSS~S2S0!2gSQ~Q2Q0!, ~21a!

XQ52gSQ~S2S0!2gQQ~Q2Q0!. ~21b!

According to the Onsager theory of irreversible therm
dynamics, the linear relations between the currents
forces given by Eq.~14! may be written in terms of a matrix
of phenomenological rate coefficients where the off-diago
elements are the negatives one of another across the
diagonal~the matrix is not symmetric sinceS is an odd vari-
able whileQ is an even variable under time inversion!:

F JS

JQ
G5FLS 2L

L LQ
G F XS

XQ
G . ~22!

Substituting Eqs.~21a! and ~21b! into Eq. ~22! and using
Eqs.~19!, we obtain the kinetic equations as

dS

dt
52~LSgSS2LgSQ!~S2S0!2~LSgSQ2LgQQ!~Q2Q0!,

~23a!
2-3
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dQ

dt
52~LgSS1LQgSQ!~S2S0!

2~LQgQQ1LgSQ!~Q2Q0!. ~23b!

The solutions of these kinetic equations are given in the n
section.

IV. SOLUTION OF THE KINETIC EQUATIONS NEAR
EQUILIBRIUM STATES

In order to study the dynamics of the model in the neig
borhood of equilibrium states, a solution of the forme2t/t is
assumed for the linearized kinetic equations given by E
~23a! and~23b! and the approaches ofS(t) andQ(t) to their
equilibrium values are described by two characteristic tim
which are also called the relaxation times. Therefore, to fi
these times requires the solution of the secular equation

Ut212LSgSS1LgSQ 2LSgSQ1LgQQ

2LgSS2LQgSQ t212LQgQQ2LgSQ
U50, ~24!

which yields the following two inverse relaxation times:

1

t1
5

~gSSgQQ2gSQ
2 !~LSLQ1L2!

LQgQQ1LSgSS
, ~25a!

1

t2
5~LQgQQ1LSgSS!S 12

~gSSgQQ2gSQ
2 !~LSLQ1L2!

~LQgQQ1LSgSS!
2 D .

~25b!

One observes that the off-diagonal rate coefficientL coupling
the dipolar and quadrupolar order currents in Eq.~22! ap-
pears in Eqs.~25a! and ~25b! only through the factor
(LSLQ1L2). The assumption is made in this paper thatL2 is
negligible compared withLSLQ for temperatures close to th
critical temperatureTC , i.e.,

LSLQ1L2'LSLQ , ~26!

for temperatures nearTC . Strickly speaking, assumptio
~26! may be completely verified only by a theory external
irreversible thermodynamics@33#. The dipolar and quadrupo
lar order parametersSandQ approach their equilibrium val
uesS0 andQ0 with two reduced characteristic timest1 and
t2 given by Eqs.~25a! and ~25b!.

The behavior of these relaxation times near the ph
transition points can be obtained analytically from the cr
cal exponents. As one approaches the critical point, var
thermodynamic functions may diverge or go to zero or ev
remain finite. It is therefore convenient to introduce an e
pansion parameter

e5TC2T, ~27!

whereTC is the critical temperature, which is a measure
the distance from the critical point. Near the critical poi
the relaxation times, namely, Eqs.~25a! and ~25b!, can be
written in the form
02610
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t1~e!5
LSgSS1LQgQQ

~LSLQ1L2!~gSSgQQ2gSQ
2 !

, ~28a!

t2~e!5
LSgSS1LQgQQ

~LSgSS1LQgQQ!22~LSLQ1L2!~gSSgQQ2gSQ
2 !

,

~28b!

where the entropy production coefficients become

gSS~e!52NkF 2J

k~TC2e!

2
1

4

2
3 1Q0

~ 1
3 1 1

2 S01 1
2 Q0!~ 1

3 2 1
2 S01 1

2 Q0!
G ,

~29a!

gSQ~e!5gQS~e!

52NkF1

4

S0

~ 1
3 1 1

2 S01 1
2 Q0!~ 1

3 2 1
2 S01 1

2 Q0!
G ,

~29b!

gQQ~e!52NkF 2K

k~TC2e!
2

1
1
3 2Q0

2
1

4

2
3 1Q0

~ 1
3 1 1

2 S01 1
2 Q0!~ 1

3 2 1
2 S01 1

2 Q0!
G .

~29c!

The equilibrium values of the order parameters appearin
Eq. ~29! can be expressed in the vicinity ofTC by

S0~e!>2F k

2K

3J/K21

~3J/K22!J/KG1/2

e1/2, ~30a!

Q0~e!>
k

2K

3

3J/K22
e ~30b!

for J/K. 2
3 where the system undergoes a second-or

phase transition and

S0~e!>S k

2K

40

13D
1/4

e1/4, ~31a!

Q0~e!>S k

2K

10

13D
1/2

e1/2 ~31b!

for the tricritical pointJ/K5 2
3 . For 1

3 ,J/K, 2
3 , where the

system undergoes a first-order phase transition, each of t
vanishes atTC as

S0~e!>2F k

2K

3J/K21

~223J/K !J/KG1/2

~2e!1/2, ~32a!
2-4
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Q0~e!>
k

2K

3

223J/K
~2e!. ~32b!

The critical exponents for the functionst1(e) andt2(e) are
defined, respectively, as

l15 lim
e→0

ln t1~e!

ln e
, ~33a!

l25 lim
e→0

ln t2~e!

ln e
, ~33b!

This definition is valid for all values ofl i ( i 51,2), the
negative values corresponding to divergences of the v
ablest1(e) andt2(e) ase goes to zero, the positive value
corresponding to relaxation times that approach zero, and
zero values corresponding to logarithmic divergence, ju
singularities, or cusps~the relaxation times are finite at th
critical point but one of their derivatives diverges! @36#. On
the other hand, in order to distinguish a cusp from a lo
rithmic divergence another sort of critical exponent (l8) is
introduced. To find the exponentl8 that describes the singu
lar parts of the functionst1(e) and t2(e) with a cusplike
singularity, we first find the smallest integerj such that the
derivatives] jt1 /]e j5t1

( j )(e) and] jt2 /]e j5t2
( j )(e) diverge

ase→0 @36#. We then define

l i85 j 1 lim
e→0

lnut i
~ j !~e !u

ln e
~ i 51,2!. ~34!

Using Eqs.~29!–~32! in Eq. ~28! and substituting the result
ing expression into Eqs.~33! one can calculate the critica
exponents for the relaxation times at the phase transi
temperatures.

The behavior of the relaxation timet1 as a function of the
temperature in the ferromagnetic phase is shown in F
1~a!–1~c! for several values ofJ/K, which correspond to the
second-order phase transition temperature, the first-o
phase transition temperature, and the tricritical point, resp
tively. In the figures, the solid curves are forLS510, L
50.000 01, LQ51.0, the dashed curves forLS515, L
50.000 01,LQ51.5, and the numbers associated with ea
curve are the various values ofJ/K. The vertical dotted lines
refer to the phase transition temperatures. In this caset1
increases rapidly with increasing temperature and diverge
the temperature approaches the second-order phase tran
point on either side, as seen in Fig. 1~a!, because the critica
exponents oft1 in the ferromagnetic phase forJ/K. 2

3 are
found to bel1521.0 for all kinetic coefficients. On the
other hand,t1 also increases rapidly as the temperature
raised but makes a sharp cusp with a critical point expon
l150.0 but l1851.0 ~since the second derivative oft1 di-
verges ase21! at the first-order phase transition temperatu
illustrated in Fig. 1~b!. It should be mentioned that this is
truly first-order behavior and not due to the proximity
critical behavior via a tricritical point. Moreover, the beha
ior of t1 as a function of temperature near the tricritical po
02610
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FIG. 1. ~a! Relaxation timet1 as a function of the temperatur
for the ferromagnetic phase. The number accompanying each c
denotes the value ofJ/K. The vertical dotted lines represent th
critical points, which are all second order. The solid and das
curves correspond toLS510,L50.00001,LQ51.0 andLS515,L
50.00001,LQ51.5, respectively.~b! Same as~a! but the system
undergoes a first-order ferromagnetic phase transition and the
tical dotted lines indicate the first-order phase transition temp
tures. LS510, L50.0001, LQ51.0. ~c! Same as~a! but for the
system at the tricritical point andLS510, L50.00001,LQ51.0.
2-5
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is plotted in Fig. 1~c!. One can see from the figure thatt1
also increases rapidly with temperature and diverges at
tricritical point as in the second-order case but with a diff
ent value of critical exponent, namely,l1'20.893. Since
the critical exponent for the tricritical case is smaller th
that for the critical case the divergence fort1 near the tric-
ritical point is more sudden than near the second-order ph
transition point. Furthermore,t1 remains constant very fa
from the phase transition temperatures and tricritical po
Finally, we have found that increasing the values ofLS and
LQ leads to a speeding up of the whole relaxation proces
can be seen by comparing the dashed and solid curves in
1~a!.

The dependence of the other relaxation timet2 on the
temperature in the case of the ferromagnetic phase is re
sented in Figs. 2~a!–2~c! for several values ofJ/K, which
correspond to the second-order phase transition tempera
the first-order phase transition temperature, and the tricrit
point, respectively. In these figures, the solid and das
curves correspond toLS510, L50.000 01,LQ51.0 andLS
515, L50.000 01,LQ51.5, respectively, and the numbe
on the curves are the values ofJ/K. The vertical dotted lines
illustrate the critical temperatures.t2 scarcely varies with
temperature in this phase, and slightly increases just be
and above the phase transition temperatures. It should
stressed that cusps occurred fort2 at the critical and tricriti-
cal points, seen in Fig. 2~a! and Fig. 2~c!, respectively, be-
cause the second derivative oft2 for the critical case and the
first derivative for the tricritical case diverge ase21 and as
e21/2, respectively, whene→0. Hence from Eq.~34! it fol-
lows thatl28522151 for the critical case andl28512 1

2

50.5 for the tricritical case. On the other hand,t2 displays a
different behavior at the first-order phase transition tempe
ture, just a jump discontinuity withl2'0.0 @see Fig. 2~b!#.
We have also found that increasing values ofLS and LQ
leads to a speeding of the whole relaxation process@compare
also the dashed and solid curves in Fig. 2~a!#.

The temperature dependence of the relaxation timest1
andt2 in the quadrupolar phase is shown in Fig. 3 for se
eral values ofJ/K, which correspond to the first-order pha
transition temperature. In the figure,t1 is depicted as solid
curves andt2 as dashed curves for only one case, nam
LS510,L50.000 01, andLQ51.0. The number accompany
ing each curve denotes the value ofJ/K and the dotted line
corresponds to the first-order phase transition temperatu
the quadrupolar order parameter. Unlike the relaxation t
t1 in the ferromagnetic phase,t1 in the quadrupolar phas
does not depend onJ/K below the critical temperature
whereas it depends onJ/K above the critical point. It in-
creases rapidly with increasing temperature but remains
nite at the critical point. On the other hand, the other rel
ation time t2 scarcely varies except at temperatures j
below and above the first-order phase transition tempera
where it increases slightly with increasingJ/K.

Phenomenological insight can be given into the differ
behaviors of the relaxation times via the correspond
eigenvectors of the secular equation, namely, Eq.~24!. The
eigenvectorsf (k) (k51,2), are determined from the follow
ing equation:
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F tk
212LSgSS1LgSQ 2LSgSQ1LgQQ

2LgSS2LQgSQ tk
212LQgQQ2LgSQ

G Ff~k!1

f~k!2
G50,

~35!

wheretk
21 are the eigenvalues given by Eq.~25!. Equation

~35! yields the pair of equations

~tk
212LSgSS1LgSQ!f~k!11~2LSgSQ1LgQQ!f~k!250,

~36a!

FIG. 2. ~a! Same as Fig. 1~a!, but for the relaxation timet2 . ~b!
Same as Fig. 1~b!, but for the relaxation timet2 . ~c! Same as Fig.
1~c!, but for the relaxation timet2 .
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~2LgSS2LQgSQ!f~k!11~tk
212LQgQQ1LgSQ!f~k!250.

~36b!

Arbitrarily, we let f (k)151. Then

f~k!25
2tk

211LSgSS2LgSQ

2LSgSQ1LgQQ
~37a!

or

f~k!25
LgSS1LQgSQ

tk
212LQgQQ2LgSQ

. ~37b!

Hence, the corresponding eigenvectors are

f~k!5F 1
f~k!2

G . ~38!

Having found the system of relaxation times and the c
responding eigenvectors, it is instructive to calculate next
normal coordinates associated with the negative recipro
of these relaxation times and the eigenvectors. Diagonaliz
the system of equations~23! one finds

F Ẏ1

Ẏ2
G52F t1

21 0

0 t2
21G FY1

Y2
G , ~39!

whereY1 andY2 are the normal coordinates.Y1 andY2 are
obtained by using Eq.~38! as

FIG. 3. Relaxation timest1 andt2 as functions of temperatur
for the quadrupolar phase. The number accompanying each c
denotes the value ofJ/K. The vertical dotted line represents th
critical point, which is first order and the same for eachJ/K. The
solid and dashed curves correspond tot1 andt2 , respectively, and
LS510, L50.00001,LQ51.0.
02610
r-
e
ls
g

Y15~S2S0!2
t1

212LSgSS1LgSQ

LgQQ2LSgSQ
~Q2Q0!, ~40a!

Y25~S2S0!2
t2

212LSgSS1LgSQ

LgQQ2LSgSQ
~Q2Q0!. ~40b!

Using Eq.~40!, the dipolar and quadrupolar order paramet
may be written, respectively, as

S5S01
1

t2
212t1

21 $@t2
211 1

2 ~LgSQ2LSgSS!#Y1

2@t1
211 1

2 ~LgSQ2LSgSS!#Y2%, ~41a!

Q5Q01
1

t2
212t1

21 ~LgQQ2LSgSQ!~Y12Y2!. ~41b!

Equations~41! show that the relaxation of the dipolar an
quadrupolar order parameters is characterized by both re
ation timest1 and t2 . For temperatures near the critic
temperaturesTC , Y2 decays much more rapidly in time tha
Y1 sincet1 increases rapidly and approaches infinity wh
t2 increases only slightly for such temperatures. Therefo
one concludes that both of the order parameters given by
~41! experience a critical slowing down. It should be me
tioned that, for temperatures nearTC , not only ~as men-
tioned above! doesY1 decay much more slowly in time tha
Y2 but also Eq.~41a! shows that the amplitude of the norm
coordinateY2 is much smaller than the amplitude of th
normal coordinateY1 . These behaviors have also been o
served in the theory of relaxation phenomena in Ising a
ferromagnets@34#. On the other hand, if the temperature
near the first-order phase transition temperature,Y1 decays
more rapidly thanY1 in the case of the second-order pha
transition temperature, becauset1 increases rapidly but doe
not approach infinity at the first-order phase transition. Mo
over, Y2 behaves just likeY2 in the case of a second-orde
phase transition.

V. SUMMARY AND DISCUSSIONS

In this paper, we have studied the dynamics of the spi
Ising system containing biquadratic interactions in the nei
borhood of thermal equilibrium states by means of Onsag
theory of irreversible thermodynamics. More specifically, u
ing an expression for the free energy obtained by
molecular-field approximation in the Bragg-Williams forma
ism, the entropy produced in the irreversible process is
culated and the time derivatives of dipolar and quadrupo
order parameters are treated as fluxes conjugate to thei
propriate forces in the sense of Onsager’s theory. The kin
equations are obtained by introducing the phenomenolog
kinetic coefficients that satisfy the Onsager reciprocal re
tion. The solution of these equations near equilibrium sta
is given by two relaxation times which describe the noneq
librium behavior in the cooperative system. The behavior
these relaxation times as a function of temperature is de
mined and examined for temperatures near the phase tr
tion points. The results are summarized as follows. One

rve
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the relaxation times (t1) increases rapidly with increasin
temperature and tends to infinity near the critical point
(TC2T)21 and the tricritical point as (TC2T)20.893, but it
has a sharp cusp withl1851 at the first-order phase transitio
point in the ferromagnetic phase. The other relaxation ti
(t2) scarcely varies with temperature in the ferromagne
phase; it increases slightly just below and above the ph
transition temperatures and the tricritical point. It should
noted that cusps are seen for the critical and tricritical beh
iors of t2 with l2851 and l2850.5, respectively, while a
jump discontinuity (l250.0) is observed for the first-orde
behavior oft2 . On the other hand, in the quadrupolar pha
t1 increases rapidly with increasing temperature, remain
nite at the first-order phase transition, and does not dep
on J/K below the critical points, whereas it depends onJ/K
above the critical points. However, liket2 in the ferromag-
netig phase,t2 in the quadrupolar phase also scarcely var
with temperature and slightly increases just below and ab
the first-order phase transition point. Moreover, we also g
phenomenological insight into the different behaviors of
:

r.

r,
.

02610
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c
se
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,
fi-
nd

s
e

e
e

relaxation times, via the corresponding eigenvectors of
secular equation.

The behavior of the relaxation times as a function of te
perature mentioned above is also compared with the res
of conventional kinetic theory in the random-phase or g
eralized molecular-field approximation@17# and exactly the
same behavior is found fort1 andt2 ~compare Figs. 1 and 2
here with Fig. 2 in Ref.@17#, and also Fig. 3 here with Fig. 1
in the same reference!. It is worthwhile to mention that the
relaxation times above the critical temperatures are not
tained in Ref.@17#.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of NATO Gra
No. CRG.970008 1036/97, without which this work cou
not have been accomplished. This work was also suppo
by Erciyes University Research Funds under Grant No.
70-01.
B
i,
@1# M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A4,
1071 ~1971!.

@2# L. Lajzerowicz and J. Sivardiere, Phys. Rev. A11, 2079
~1975!.

@3# D. Mukamel and M. Blume, Phys. Rev. A10, 610 ~1974!; J.
Sivardiere and J. Lajzerowicz,ibid. 11, 2090~1975!; 11, 2101
~1975!; M. Shick and W. H. Shih, Phys. Rev. B34, 1797
~1986!; J. Bernasconi and F. Rys,ibid. 4, 3045~1971!; H. H.
Chen and P. M. Levy,ibid. 7, 4267~1973!; W. Hoston and A.
N. Berker, Phys. Rev. Lett.67, 1027 ~1991!; A. Benyoussef
and A. Pelizzola, J. Phys.: Condens. Matter6, 3411~1994!; M.
E. S. Borelli and C. E. I. Carneiro, Physica A230, 249~1996!;
N. Boccara and M. Saber, J. Phys. C19, 1983 ~1996!; A.
Bakchich and M. El Bouzani, Phys. Rev. B56, 11 161~1997!;
E. Vives, T. Castan, and P. A. Lindgard,ibid. 53, 8915~1996!.
E. Albayrak and M. Keskin, J. Magn. Magn. Mater.206, 83
~1999!.

@4# T. Kaneyoshi J. Phys. Soc. Jpn.56, 4199~1987!; K. G. Chack-
raborty, J. Phys. C21, 2911 ~1988!; J. W. Tucker, J. Phys.
Condens. Matter1, 485 ~1989!; I. P. Fittipaldi and T. Kaney-
oshi,ibid. 1, 6513~1989!; J. W. Tucker, J. Magn. Magn. Mate
80, 203~1989!; 87, 16 ~1990!; J. Appl. Phys.69, 6164~1991!;
J. Magn. Magn. Mater.104-107, 191 ~1992!.

@5# R. R. Netz, Europhys. Lett.17, 373 ~1992!.
@6# A. N. Berker and M. Wortis, Phys. Rev. B14, 4946~1976!; M.

Kaufman, R. B. Griffiths, J. M. Yeomans, and M. E. Fishe
ibid. 23, 3448 ~1981!; O. F. de Alcantara Bonfim and F. C
SaBaretto, Phys. Lett.109A, 361 ~1985!; C. E. J. Carneiro, V.
B. Henriques, and S. R. Salinas, J. Phys. A20, 189~1987!; W.
Hoston and A. N. Berker, J. Appl. Phys.70, 6101~1991!; R. R.
Netz and A. N. Berker, Phys. Rev. B47, 15 019 ~1993!; A.
Falicov and A. N. Berker, Phys. Rev. Lett.76, 4380~1996!; A.
Bakchich and M. El Bouziani, Phys. Rev. B56, 11 155~1997!.

@7# C. Buzano and A. Pelizzola, Physica A189, 333 ~1992!; A.
Rosengren and S. Lapinskas, Phys. Rev. B47, 2643~1993!; S.
Lapinskas and A. Rosengren,ibid. 49, 15 190 ~1994!; G.
Grigelionis and A. Rosengren, Physica A208, 287 ~1994!; C.
Buzano, L. R. Evangelista, and A. Pelizzola, Phys. Rev. B53,
15 063~1996!.

@8# W. M. Ng and J. H. Barry, Phys. Rev. B17, 3675~1978!.
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Physica A231, 673~1996!; M. Keskin, C. Ekiz, and O. Yalc¸ın,
ibid. 267, 392 ~1999!.

@11# D. M. Saul, M. Wortis, and D. Stauffer, Phys. Rev. B9, 4964
~1974!.

@12# A. K. Jain and D. P. Landau, Phys. Rev. B22, 870 ~1973!; M.
Tanaka and T. Kawabe, J. Phys. Soc. Jpn.54, 2194~1985!; Y.
L. Wang and C. Wentworth, J. Appl. Phys.61, 4411~1987!; Y.
L. Wang, F. Lee, and J. D. Kimel, Phys. Rev. B36, 8945
~1987!; I. Ono, J. Phys. C8, 1541~1988!.

@13# K. Takahashi and M. Tanaka, J. Phys. Soc. Jpn.46, 1428
~1979!; 48, 1623~1980!.

@14# J. B. Collins, P. A. Rikvold, and E. T. Govlinski, Phys. Rev.
38, 6741 ~1988!; Z. Koza, C. Jasiukiewicz, and A. Pekalsk
Physica A164, 191 ~1990!.

@15# K. G. Chakraborty and J. W. Tucker, Physica A137, 111
~1986!; C. Buzano, Phys. Scr.41, 640 ~1990!; C. Buzano and
P. De Los Rios, Physica A203, 640 ~1994!; E. Albayrak and
M. Keskin, J. Magn. Magn. Mater.203, 201 ~2000!.

@16# T. Obokata, J. Phys. Soc. Jpn.26, 895 ~1969!.
@17# M. Tanaka and K. Takahashi, J. Phys. Soc. Jpn.43, 1832

~1977!.
@18# G. L. Batten, Jr., and H. L. Lemberg, J. Chem. Phys.70, 2934

~1979!.
2-8



,

ty

. A

l

DYNAMICS OF A SPIN-1 ISING SYSTEM IN THE . . . PHYSICAL REVIEW E 64 026102
@19# Y. Saito and H. Mu¨ller-Krumbhaar, J. Chem. Phys.74, 721
~1981!.

@20# Y. Achiam, Phys. Rev. B31, 260 ~1985!.
@21# M. Keskin and P. H. E. Meijer, Physica A122, 1 ~1983!; M.

Keskin, ibid. 135, 226 ~1986!; M. Keskin and P. H. E. Meijer,
J. Chem. Phys.85, 7324~1986!; M. Keskin, M. Arı, and P. H.
E. Meijer, Physica A157, 1000 ~1989!; M. Keskin and A.
Solak, J. Chem. Phys.112, 6396~2000!.

@22# M. Keskin and R. Erdem, J. Stat. Phys.89, 1035~1997!.
@23# R. Kikuchi, Prog. Theor. Phys. Suppl.35, 1 ~1966!.
@24# M. Keskin and P. H. E. Meijer, Phys. Rev. E55, 5343~1997!.
@25# R. J. Glauber, J. Math. Phys.4, 294 ~1963!.
@26# L. Onsager, Phys. Rev.37, 405 ~1931!; 38, 2265~1931!; S. R.

de Groot,Thermodynamics of Irreversible Processes~North-
Holland, Amsterdam, 1951!; S. R. de Groot and P. Mazur
Non-Equilibrium Thermodynamics~North-Holland, Amster-
02610
dam, 1961!; J. H. Barry, Ph.D. thesis, The Catholic Universi
of America, 1961.

@27# T. Kaplan, M. J. Aziz, and L. J. Gray, J. Chem. Phys.90, 1133
~1989!; 99, 8031~1993!.

@28# N. G. Van Kampen, J. Stat. Phys.63, 1019~1991!.
@29# F. Sharipov, Phys. Rev. E59, 5128~1999!.
@30# H. J. Kreuzer, R. G. Chapman, and N. H. March, Phys. Rev

37, 582 ~1988!.
@31# G. Liu, Phys. Fluids A2, 605 ~1990!.
@32# T. Tanaka, P. H. E. Meijer, and J. H. Barry, J. Chem. Phys.37,

1397 ~1962!.
@33# J. H. Barry, J. Chem. Phys.45, 4172~1966!.
@34# J. H. Barry and D. A. Harrington, Phys. Rev. B4, 3068~1971!.
@35# M. Tanaka and I. Mannari, J. Phys. Soc. Jpn.41, 741 ~1976!.
@36# H. E. Stanley,Introduction to Phase Transitions and Critica

Phenomena~Oxford University Press, New York, 1971!.
2-9


